A two parameter iterative method for solving algebraic systems of domain decomposition type
نویسندگان
چکیده
منابع مشابه
A New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملDECOMPOSITION METHOD FOR SOLVING FULLY FUZZY LINEAR SYSTEMS
In this paper, we investigate the existence of a positive solution of fully fuzzy linear equation systems. This paper mainly to discuss a new decomposition of a nonsingular fuzzy matrix, the symmetric times triangular (ST) decomposition. By this decomposition, every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T.
متن کاملSsT decomposition method for solving fully fuzzy linear systems
The SST decomposition method for solving system of linear equations make it possible to obtain the values of roots of the system with the specified accuracy as the limit of the sequence of some vectors. In this topic we are going to consider vectors as fuzzy vectors. We have considered a numerical example and tried to find out solution vector x in fuzzified form using method of SST decomposition.
متن کاملA METHOD FOR SOLVING FUZZY LINEAR SYSTEMS
In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1993
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1993.104569